Meet The Microbiologist

By: American Society for Microbiology
  • Summary

  • Who is microbiology? Meet the Microbiologist (MTM) introduces you to the people who discover, innovate and advance the field of microbiology. Go behind-the-scenes of the microbial sciences with experts in virology, bacteriology, mycology, parasitology and more! Share in their passion for microbes and hear about research successes and even a few setbacks in their field. MTM covers everything from genomics, antibiotic resistance, synthetic biology, emerging infectious diseases, microbial ecology, public health, social equity, host-microbe biology, drug discovery, artificial intelligence, the microbiome and more! From graduate students to working clinicians and emeritus professors, host, Ashley Hagen, Scientific and Digital Editor at the American Society for Microbiology, highlights professionals in all stages of their careers, gleaning wisdom, career advice and even a bit of mentorship along the way.
    American Society for Microbiology - Creative Commons Attribution-Noncommercial
    Show More Show Less
Episodes
  • Revenge of the Microbes With Brenda Wilson and Brian Ho
    Jan 16 2025
    Episode Summary Mother-Son duo, Brenda Wilson, Ph.D., professor of microbiology and the Associate Director of Undergraduate Education in the School of Molecular and Cellular Biology at the University of Illinois at Urbana Champaign and Brian Ho, Ph.D., researcher and lecturer at the Institute of structural and molecular biology, a joint institute between the Department of structural and molecular biology at the University College of London and the Department of Biological Sciences at Birkbeck University of London discuss the inspiration and motivation for their recent book, Revenge of the Microbes: How Bacterial Resistance is Undermining the Antibiotic Miracle, 2nd Edition, emphasizing the global nature of AMR and providing a unique perspective on what is needed to solve it. Ashley’s Biggest Takeaways: Dynamics surrounding the AMR crisis are complex and require an understanding of many different perspectives, including those of the farmers, health care professionals, pharmaceutical companies and individuals, in order to foster true and lasting global collaboration on the issue.Point-of-care diagnostics are critical to improving treatment decisions and reducing hospital costs.Better communication and education are needed in order to rebuild trust in scientists and institutions.Continuous research is necessary, as AMR will continue to evolve.Citizens are a key piece of the puzzle when it comes to pushing for change and supporting solutions to AMR. Featured Quotes: Wilson: “I'll start with actually my Ph.D., which is talking about bacterial antibiotic biosynthesis. And so, I did some work in that arena, but since then, I've actually been working on bacterial protein toxins. These are very potent eukaryotic modulators that when bacteria get into the host, they release these proteins that are very large, that are able to interact with very specific cells. They actually get inside the cells—into the cytosol—and then they affect various signaling pathways in the host that can go anywhere from killing the cell to modulating some of the processes that the cell undertakes, even differentiating them and causing cancer. So, one of my main focuses in my lab has always been to understand the structure and function of these toxins, to understand how they affect the eukaryotic cell system. And then now that we know a lot about them, we're actually moving more into the direction of trying to basically use them as biologics. We have some platforms that we call bacterial toxin inspired drug delivery, where we're using the mechanisms of how they work and their exquisite specificities to be able to actually use them for therapeutic applications.” Ho: “I got my start doing molecular genetics, actually, with John Mekalanos at Harvard, and I was kind of at the ground floor of the seminal work looking at the Type VI secretion system. And so, I got a front row seat to the kind of discovery and a lot of the initial understanding of the system. And I've kind of taken that work and expanded beyond it to look at kind of the ways different bacteria interact with each other within microbial communities. So my current work is looking at both DNA conjugation as well as the type six antagonism, and how the bacterial interactions kind of work together to build a larger population dynamics and interface with like the hosts that kind of house a your microbial communities.” Antimicrobial Resistance Wilson: “In 2005 [when the first edition of Revenge of the Microbes was written], there was very little activity or understanding about antibiotic resistance and how important it was. Outside of the field, doctors were encountering it. But oftentimes what was happening is they just said, ‘Oh, well, we'll just find another drug, you know.’ And pharmaceutical companies, they were recognizing that there was a problem, and they would go off trying to hunt for new ones. And then right around the late 90s, there was a big impetus, because they thought, ‘Oh, we, we have a miracle here, because we now do complete genomes. We can get out the comparative genomics and all the high throughput things, all the animations,’ and that this would lead to many more new discoveries. And I think the pharmaceutical companies were very disappointed, and they started backing out of what they deemed a huge commitment. Two decades later, people already were starting to get aware, at least in the field, and even the industry and the physicians. People were getting aware, but I think that they were stumbling, because of their silos, in trying to get interactions with each other. And I think part of it was that they felt that, ‘Oh, we can try to solve it ourselves.’ And in reality, this is a problem that that is concerning everyone, and everyone is contributing to it. Everyone has to find a solution to help, and we need to have more synergy. There have to be more interactions, and we have to do this at a much more global scale. And so that ...
    Show More Show Less
    52 mins
  • Biorisk Assessment and Management With Saeed Khan
    Nov 11 2024
    Saeed Khan, Ph.D., Head of the Department of Molecular Pathology at Dow diagnostic research and reference laboratory and President of the Pakistan Biological Safety Association discusses the importance and challenges of biosafety/biosecurity practices on both a local and global scale. He highlights key steps for biorisk assessment and management and stresses the importance of training, timing and technology. Ashley's Biggest Takeaways Adequate biosafety and biosecurity protocols depend on a thorough understanding of modern challenges, and scientists must be willing and able to respond to new technological threats appropriately.In the microbiology lab, the threat goes beyond the physical pathogen. Implications of genomics and cyber security must be built into biorisk management techniques, including data storage and waste management practices.Risk assessments involve evaluation of both inherent and residual risk.Inherent risk is linked to the pathogen.Residual risk varies according to the lab, equipment, employee, environment, etc.As a result, biosafety and biosecurity risks are constantly changing, and assessments must be repeated strategically and often.Khan recommended repeating a risk assessment whenever a key variable in the equation changes, i.e., new equipment, new employee, new pathogen. He also recommended (at minimum) conducting routine risk assessments every 6 months, or twice a year. Featured Quotes: “We need to have basic biosafety and biosecurity to stay away from these bugs and the modern challenges, like cyber biosecurity and genomics. These are the new areas, which are potential threats for the future, and where we need to train our researchers and students.” “Starting from simple hand washing or hand hygiene, the basic things we use are gloves, goggles and PPE to protect the workers, the staff and the patient from getting infected from the environment, laboratory or hospitals. These are the basic things, and it's very crucial, because if one is not using gloves in the lab or not wearing the lab coat, he or she may get infected from the sample, and the patient can get infected from the physician and doctors or nurse if they are not following the basic biosafety rules. These [things] are routinely important. Every day we should practice this.” “But there are [also] new challenges. Particularly in the microbiology lab, we [used to] think that once we killed the bacteria, then it's fine. But nowadays, it's not the way we should think about it. Though you kill the bacteria practically, it still has a sequence, [which] we call the genome, and if you have that information with you, you theoretically have the potential to recreate that pathogen… that can be used or maybe misused as well.” “[Working with] scripts of pathogens, like smallpox or the polioviruses, we call this synthetic biology. Different scientists are doing it for the right purposes, like for production of vaccines, to find new therapeutics, to understand the pathology of the diseases. But on [the other hand]—we call it dual use research of concern (DURC)—the same can be misused as well. That's why it's very important to be aware of the bugs that we are working with, and the potential of that pathogen or microbe, to the extent that can be useful or otherwise.” “So, we should be aware of the new concern of the technology, synthetic biology and DURC. These are new concepts—cyber, biosecurity and information security [are all] very much important these days. You cannot be relaxed being in the microbiology lab. Once we have identified a pathogen, declared a result to the patient and the physician, and it's been treated, we [still] need to be worried about waste management—that we discard that waste properly and we have proper inventory control of our culture. It should be safe in the locker or on in the freezers and properly locked, so we should not be losing any single tube of the culture, otherwise it may be misused.” Risk Assessment “The best word that you have used is risk assessment. So, it should gage the severity of the issue. We should not over exaggerate the risk, and we should not undermine the risk. Once the risk assessment been made, we can proceed.” “Right from the beginning of touching a patient or a sample of the patient until the end of discarding the sample, that is called biorisk management. It's a complete science that we need to be aware of—not in bits and pieces. Rather a comprehensive approach should be adopted, and each and every person in the organization should be involved. Otherwise, we may think [we are] doing something good, but someone else may spoil the whole thing, and it will be counterproductive at the end.” “We should involve each and every person working with us and the lab, and we should empower them. They should feel ownership that they are working with us, and they are [as] responsible as we are. So, this the whole process needs to be properly ...
    Show More Show Less
    50 mins
  • From Hydrothermal Vents to Cold Seeps: How Bacteria Sustain Ocean Life With Nicole Dubilier
    Sep 27 2024

    Nicole Dubilier, Ph.D., Director and head of the Symbiosis Department at the Max Planck Institute for Marine Microbiology, has led numerous reserach cruises and expeditions around the world studying the symbiotic relationships of bacteria and marine invertebrates. She discusses how the use of various methods, including deep-sea in situ tools, molecular, 'omic' and imaging analyses, have illuminated remarkable geographic, species and habitat diversity amongst symbionts and emphasizes the importance of discovery-driven research over hypothesis-driven methods.

    Watch this episode: https://www.youtube.com/watch?v=OC9vqE1visc

    Ashley's Biggest Takeaways:
    • In 1878, German surgeon, botanist and microbiologist, Heinrich Anton de Bary, first described symbiosis as the living together of two or more different organisms in close physical intimacy for a longer period of time.
    • These relationships can be beneficial, detrimental or commensal, depending on the organisms involved.
    • Microbial symbiosis research holds great potential to contribute to sustainable energy production and environmental health.
    Links for This Episode:
    • Learn more about one of Dubilier's research vessels and see videos from the expidition.
    • Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels.
    • Chemosynthetic symbioses: Primer.
    • Take the MTM listener survey!
    Show More Show Less
    31 mins

What listeners say about Meet The Microbiologist

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.